f(0) → cons(0, n__f(n__s(n__0)))
f(s(0)) → f(p(s(0)))
p(s(0)) → 0
f(X) → n__f(X)
s(X) → n__s(X)
0 → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
f(0) → cons(0, n__f(n__s(n__0)))
f(s(0)) → f(p(s(0)))
p(s(0)) → 0
f(X) → n__f(X)
s(X) → n__s(X)
0 → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(X) → X
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__0) → 01
ACTIVATE(n__f(X)) → F(activate(X))
F(s(0)) → P(s(0))
F(s(0)) → F(p(s(0)))
ACTIVATE(n__f(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
f(0) → cons(0, n__f(n__s(n__0)))
f(s(0)) → f(p(s(0)))
p(s(0)) → 0
f(X) → n__f(X)
s(X) → n__s(X)
0 → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__0) → 01
ACTIVATE(n__f(X)) → F(activate(X))
F(s(0)) → P(s(0))
F(s(0)) → F(p(s(0)))
ACTIVATE(n__f(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
f(0) → cons(0, n__f(n__s(n__0)))
f(s(0)) → f(p(s(0)))
p(s(0)) → 0
f(X) → n__f(X)
s(X) → n__s(X)
0 → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__0) → 01
ACTIVATE(n__f(X)) → F(activate(X))
F(s(0)) → F(p(s(0)))
F(s(0)) → P(s(0))
ACTIVATE(n__f(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
f(0) → cons(0, n__f(n__s(n__0)))
f(s(0)) → f(p(s(0)))
p(s(0)) → 0
f(X) → n__f(X)
s(X) → n__s(X)
0 → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
F(s(0)) → F(p(s(0)))
f(0) → cons(0, n__f(n__s(n__0)))
f(s(0)) → f(p(s(0)))
p(s(0)) → 0
f(X) → n__f(X)
s(X) → n__s(X)
0 → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F(s(0)) → F(p(s(0)))
[0, p, n0] > F1 > [s1, ns]
n0: multiset
s1: multiset
0: multiset
ns: multiset
p: []
F1: multiset
p(s(0)) → 0
0 → n__0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
f(0) → cons(0, n__f(n__s(n__0)))
f(s(0)) → f(p(s(0)))
p(s(0)) → 0
f(X) → n__f(X)
s(X) → n__s(X)
0 → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
ACTIVATE(n__f(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
f(0) → cons(0, n__f(n__s(n__0)))
f(s(0)) → f(p(s(0)))
p(s(0)) → 0
f(X) → n__f(X)
s(X) → n__s(X)
0 → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__f(X)) → ACTIVATE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVATE(n__s(X)) → ACTIVATE(X)
[ACTIVATE1, nf1]
ACTIVATE1: multiset
nf1: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
ACTIVATE(n__s(X)) → ACTIVATE(X)
f(0) → cons(0, n__f(n__s(n__0)))
f(s(0)) → f(p(s(0)))
p(s(0)) → 0
f(X) → n__f(X)
s(X) → n__s(X)
0 → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__s(X)) → ACTIVATE(X)
[ACTIVATE1, ns1]
ACTIVATE1: multiset
ns1: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
f(0) → cons(0, n__f(n__s(n__0)))
f(s(0)) → f(p(s(0)))
p(s(0)) → 0
f(X) → n__f(X)
s(X) → n__s(X)
0 → n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(X) → X